QUESTION:

Compounds ${\rm 'A'}$ and ${\rm 'B'}$ react according to the following chemical equation.

 $A_{(g)} + 2B_{(g)} \rightarrow 2C_{(g)}$

The concentration of either \dot{A} and \dot{B} were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for all the rate equations for this reaction.

Experiment	Initial concentration of [A]/mol L^{-1}	Initial concentration of [B]/mol L
1.	0.30	0.30
2.	0.30	0.60
3.	0.60	0.30
A Rate = $k[A]^2[B]$ B Rate = $k[A][B]^2$		
C Rate	= k[A][B]	
D Rate	= k[A] ² [B] ⁰	

ANSWER:

Correct option is B)

Let order with respect to A and B are x and y respectively. $\therefore \text{Rate} = k(A)^x(B)^y$ $0.1 = k(0.3)^x(0.3)^y...(i)$ $0.4 = k(0.3)^x(0.6)^y...(ii)$ $0.2 = k(0.6)^x(0.3)^y...(iii)$ Dividing (ii) by (i): $\frac{0.4}{0.1} = \frac{(0.6)^y}{(0.3)^y}$ $\therefore y = 2$ Dividing (iii) by (i): $\frac{0.2}{0.1} = \frac{(0.6)^x}{(0.3)^x}$ $\therefore x = 1$ Rate law will be:

Rate = k[A]^1[B]^2.